Physics in Electron-Ion Collider Experiments II: From Factors and Parton Distributions

Jian-ping Chen (陈剑平), Jefferson Lab, Virginia, USA Huada School on QCD 2016: QCD in the EIC Era, May 23 – June 3, 2016

- Electron Scattering
- Elastic Scattering: From Factors

Surprise: G_{F}^{p} @ high Q^{2} proton shape, $2-\gamma$ exchange

Proton radius puzzle

Deep-Inelastic Scattering:

Unpolarized Structure Functions → Parton Distribution Functions

High-x physics

Sea asymmetry

Electron Scattering

A Clean Probe To Study Nucleon Structure and QCD

Electron Scattering and Nucleon Structure

- Clean probe to study nucleon structure only electro-weak interaction, well understood
- Elastic Electron Scattering: Form Factors
 - → 60s: established nucleon has structure (Nobel Prize) electrical and magnetic distributions
- Resonance Excitations
 - → internal structure, rich spectroscopy (new particle search) constituent quark models

Robert Hofstadter,

Nobel Prize 1961

- Deep Inelastic Scattering
 - → 70s: established quark-parton picture (Nobel Prize) parton distribution functions (PDFs) polarized PDFs: spin Structure

TMDs, GPDs: 3-d structure:

Factorization: observable $A \sim H \otimes S$

J.T. Friedman

R. Taylor

H.W. Kendall

Nobel Prize 1990

Typical Electron Scattering Spectra at Fixed Q²

Inclusive Electron Scattering

4-momentum transfer squared

$$Q^2 = -q^2 = 4EE'\sin^2\frac{\theta}{2}$$

Invariant mass squared

$$W^2 = M^2 + 2M\nu - Q^2$$

Unpolarized:
$$\frac{d^2\sigma}{d\Omega dE'} = \sigma_M \left[\frac{1}{v} F_2(v, Q^2) + \frac{2}{M} F_1(v, Q^2) \tan^2 \frac{\theta}{2} \right]$$
$$\sigma_M = \frac{\alpha^2 E' \cos^2 \left(\theta/2\right)}{4E^3 \sin^4 \left(\theta/2\right)}$$

 F_1 and F_2 : information on the nucleon/nuclear structure

Nucleon Form Factors

Charge and Magnetization Distributions

Elastic Electron Scattering

Scattering cross section of nuclei:

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega} \Big|_{\text{Ruth.}} \frac{E'}{E} \cos^2 \frac{\theta}{2} |F(q^2)|^2$$

Structure reflects finite charge radius, through Fourier transform, of ~4 fm.

Elastic Electron Scattering

~200 MeV

Discovery: Proton Has Structure

Scattering off a spin-1/2 Dirac particle:

$$\frac{d\sigma}{d\Omega} = \left(\frac{\alpha}{4ME\sin^2(\theta/2)}\right)^2 \frac{E'}{E} \left[\frac{q^2}{2M}\sin^2(\theta/2) + \cos^2(\theta/2)\right]$$

The proton has an anomalous magnetic moment,

$$g_p \neq 2$$
, $g_p \simeq 5.6$

and, hence, internal (spin) structure.

Elastic Electron Scattering

The lepton tensor is calculable:

$$L_{\text{lepton}}^{\mu\nu} = 2\left(k^{\mu}k'^{\nu} + k^{\nu}k'^{\mu} + g^{\mu\nu}(m^2 - k \cdot k')\right)$$

The nucleon tensor is not; it's general (spin-independent, parity conserved) form is:

$$K_{\mu
u \, {
m nucleon}} = -K_1 g_{\mu
u} + rac{K_2}{M^2} p_\mu p_
u + rac{K_4}{M^2} q_\mu q_
u + rac{K_5}{M^2} \left(p_\mu q_
u + p_
u q_\mu
ight)$$

Charge conservation at the proton vertex reduces the number of structure functions:

$$q_{\mu}K_{\text{nucleon}}^{\mu\nu} \to K_4 = f(K_1, K_2), \quad K_5 = g(K_2)$$

and one obtains the Rosenbluth form, with electric and magnetic form factors:

$$\frac{d\sigma}{d\Omega} = \left(\frac{\alpha}{4ME\sin^2(\theta/2)}\right)^2 \frac{E'}{E} \left[2K_1\sin^2(\theta/2) + K_2\cos^2(\theta/2)\right], \quad K_{1,2}(q^2)$$

Elastic Scattering on a Proton

From relativistic quantum mechanics one can derive the the formula electron-proton scattering where one has assumed the exchange of a single virtual photon.

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \cdot \frac{E'}{E} \left[\frac{G_E^2 + \tau G_M^2}{1 + \tau} + 2\tau G_M^2 \tan^2 \frac{\theta}{2} \right]$$

where G_F and G_M form factors take into account the finite size of the proton.

$$G_E = G_E(Q^2), G_M = G_M(Q^2); G_E(0)=1, G_M(0) = \mu_p$$

$$Q^2 = 4 \text{ E isin}^2(\theta/2)$$
 and $\tau = Q^2 / 4m_p^2$

Elastic cross sections at small angles and small Q2's are dominated by G_F (Prad Hall B)

Elastic cross Sections at small angles and small Q^2 's are dominated by G_M (GMP Hall A)

For moderate $Q^{2'}$ s one can separate G_E and G_M with Rosenbluth or asymmetry measurements.

Before JLab and Recent non-JLab Data

Form Factors -> Charge/Current Distributions

Charge distributions

JLab Data on EM Form Factors

Testing Ground for Theories of Nucleon Structure

Form factors: 2D light-front densities of hadrons

unpolarized charge density

density for transverse polarization

Burkardt (2000,2003)

Miller(2007)

Carlson, Vdh(2008)

G_F^p: JLab Polarization-Transfer Data

Using Focal Plane Polarimeter in Hall A

- E93-027 PRL 84, 1398 (2000)
- E99-007 PRL 88, 092301 (2002) E04-108, <u>arXiv:1005.3419v2</u> (2010)

Clear discrepancy between polarization transfer and Rosenbluth data

- Investigate possible theoretical sources for discrepancy
 - → likely two-photon contributions

Information on the shape of the proton and the orbital angular momentum.

Transverse density.

The Proton's Shape

It's a Ball. No, It's a Pretzel. Must Be a Proton. (K. Chang, NYT, May 6, 2003)

quark spin parallel to that of the proton (left), quark spin perpendicular to the proton spin (right).

G. Miller, PRC 68, 022201 (03)

Belitsky, Ji and Yuan: PRD 69, 074014(04)

G_Eⁿ: 6 GeV Results and 12 GeV Plan

- The dramatic turnover of the Argonne DSE model would be clearly visible.
- If the turnover is seen, it would provide strong evidence for the importance of diquark degrees of freedom in the nucleon form factors.

Planned JLab Measurements of Form Factors

Proton Radius Puzzle

Electron probe vs. muon probe

Proton radius puzzle

μH data:

Pohl et al. (2010)

Antognini et al. (2013)

ep data:

 $R_E = 0.8409 \pm 0.0004 \text{ fm}$

7 σ difference !?

 $R_E = 0.8775 \pm 0.0051 \text{ fm}$

Charge Radius of the Proton

- Proton G_E has no measured minima and it is too light for the Fourier transformation to work in a model independent way.
- Thus for the proton we make use of the fact that as Q² goes to zero the charge radius is proportional to the slope of G_E

$$G_E(Q^2) = 1 + \sum_{n \ge 1} \frac{(-1)^n}{(2n+1)!} \langle r^{2n} \rangle Q^{2n}$$

$$r_p \equiv \sqrt{\langle r^2 \rangle} = \left(-6 \left. \frac{\mathrm{d}G_E(Q^2)}{\mathrm{d}Q^2} \right|_{Q^2=0} \right)^{1/2}$$

We don't measure to Q^2 of zero, so this is going to be an extrapolation problem.

Systematic issues with low- $Q^2 G_{Ep}$ polarization data!

Beam-target asymmetry and recoil polarization data disagree at low Q^2 !

r_p from muonic hydrogen Lamb shift disagrees with ep scattering and electronic hydrogen Lamb shift determinations

Tension among low-Q² G_E/G_M ratios from polarization observables not yet understood, but at least one of these experiments has to have an unaccounted-for source of systematic error!

Proton radius puzzle: what's next?

- μH Lamb shift: muonic D, muonic ³He, ⁴He have been performed
- electronic H Lamb shift: higher accuracy measurements underway
- electron scattering analysis: Lorenz et al.
 - radius extraction fits (use fits with correct analytical behavior: 2π cut)
 - radiative corrections, two-photon exchange corrections
 - new fit $R_E = 0.904$ (15) fm (4 σ from μ H) Lee, Arrington, Hill (2015)
- electron scattering experiments: new G_{Ep} experiments down to $Q^2 \approx 2 \times 10^{-4} \text{ GeV}^2$
 - MAMI/A1: Initial State Radiation (2013/4)
 - JLab/Hall B: HyCal, magnetic spectrometer-free experiment, norm to Møller (2016/7)
 - MESA: low-energy, high resolution spectrometers (2019)
- muon scattering experiments: MUSE@PSI (2017/8)
- e⁻e⁺ versus μ⁻μ⁺ photoproduction: lepton universality test

see talk: H. Gao

PRad Experimental Setup in Hall B at JLab

- High resolution, large acceptance calorimeter
- Windowless H₂ gas flow target
- Simultaneous detection of elastic and Moller electrons
- GEM detectors
- Q^2 range of $2x10^{-4} 0.14 \text{ GeV}^2$

Future sub 1% measurements:

- (1) ep elastic scattering at Jlab (PRad)
- (2) μp elastic scattering at PSI 16 U.S. institutions! (MUSE)
- (3) ISR experiments at Mainz

Ongoing H spectroscopy experiments

Deep-Inelastic Scattering Unpolarized Nucleon Structure

Parton Distributions:
Flavor Structure: Valence and Sea
Gluons

Inelastic Scattering

Considerably more complex, indeed!

Simplify - consider inclusive inelastic scattering,

$$d\sigma \propto \left\langle \left| \mathcal{M} \right|^2 \right\rangle = rac{g_e^4}{g^4} L_{\mathrm{lepton}}^{\mu
u} W_{\mu
u \, \mathrm{nucleon}}, \qquad W_{\mu
u \, \mathrm{nucleon}}(p,q)$$

Again, two (parity-conserving, spin-independent) structure functions:

$$W_1, W_2$$
 or, alternatively expressed, F_1, F_2

which may depend on two invariants,

$$Q^2 = -q^2$$
, $x = -\frac{q^2}{2q \cdot p}$, $0 < x < 1$

So much for the structure, the physics is in the structure functions.

Elastic scattering off Dirac Protons

Compare:

$$L_{\text{lepton}}^{\mu\nu} = 2\left(k^{\mu}k'^{\nu} + k^{\nu}k'^{\mu} + g^{\mu\nu}(m^2 - k \cdot k')\right)$$

with:

$$K_{\mu\nu \, \text{nucleon}} = K_1 \left(-g_{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) + \frac{K_2}{M^2} \left(p^{\mu} + \frac{1}{2}q^{\mu} \right) \left(p^{\nu} + \frac{1}{2}q^{\nu} \right)$$

which uses the relations between $K_{1,2}$ and $K_{4,5}$

Then, e.g. by substitution of k' = k-q in L:

$$K_1 = -q^2$$
, $K_2 = 4M^2$

Note, furthermore, that inelastic cross section reduces to the elastic one for:

$$W_{1,2}(q^2, x) = -\frac{K_{1,2}(q^2)}{2Mq^2}\delta(x-1)$$

Elastic scattering off Dirac Partons

Imagine *incoherent* scattering off *Dirac* Partons (quarks) q:

$$W_1^q = \frac{e_q^2}{2m_q}\delta(x_q - 1), \quad W_2^q = -\frac{2m_q e_q^2}{q^2}\delta(x_q - 1) \text{ and } x_q = -\frac{q^2}{2q \cdot p_q}$$

and, furthermore, suppose that the quarks carry a fraction, z, of the proton momentum

$$p_q = z_q p$$
, so that $x_q = \frac{x}{z_q}$ (also note $m_q = z_q M!$)

which uses the relations between $K_{1,2}$ and $K_{4,5}$

Now,

$$MW_1 = M \sum_q \int_0^1 rac{e_q^2}{2M} \delta(x - z_q) \, f_q(z_q) \, dz_q = rac{1}{2} \sum_q e_q^2 f_q(x) \equiv F_1(x) \, dz_q$$
 $-rac{q^2}{2Mx} W_2 = \sum_q \int_0^1 x e_q^2 \delta(x - z_q) \, f_q(z_q) \, dz_q = x \sum_q e_q^2 f_q(x) \equiv F_2(x)$

Two important *observable* consequences,

Bjorken scaling: $F_{1,2}(x)$, not $F_{1,2}(x,Q^2)$

Callan-Gross relation: $F_2 = 2xF_1(x)$

Deep-Inelastic Electron Scattering

Discovery of Quarks (Partons)

J.T. Friedman

R. Taylor Nobel Prize 1990

H.W. Kendall

Callan-Gross relation:

Point particles cannot be further resolved; their measurement does not depend on wavelength, hence Q²,

Spin-1/2 quarks cannot absorb longitudinally polarized vector bosons and, conversely, spin-0 (scalar) quarks cannot absorb transversely polarized photons.

Deep-Inelastic Neutrino Scattering

Picture from CERN...

Gargamelle bubble chamber, observation of weak neutral current (1973).

Charged-current DIS!

Nucl.Phys. **B73** (1974) 1 Nucl.Phys. **B85** (1975) 269 Nucl.Phys. **B118** (1977) 218 Phys.Lett. **B74** (1978) 134

Deep-Inelastic Scattering - Fractional Electric Charges

Neutral-current (photon) DIS:

$$F_2 = x \sum e_q^2(q + \bar{q}), \quad p: uud, \quad n: ddu$$

$$F_2^N = x \frac{e_u^2 + e_d^2}{2} (u + \bar{u} + d + \bar{d})$$

Charged-current DIS:

$$F_2^{\nu p} = 2x(d+\bar{u}), \quad F_2^{\nu n} = 2x(u+\bar{d})$$

 $F_2^{\nu N} = x(u+\bar{u}+d+\bar{d})$

Deep-Inelastic Scattering - Fractional Electric Charges

Neutral-current (photon) DIS:

$$F_2 = x \sum e_q^2 (q + \bar{q}), \quad p: uud, \quad n: ddu$$

$$F_2^N = x \frac{e_u^2 + e_d^2}{2} (u + \bar{u} + d + \bar{d})$$

Charged-current DIS:

$$F_2^{\nu p} = 2x(d+\bar{u}), \quad F_2^{\nu n} = 2x(u+\bar{d})$$

$$F_2^{\nu N} = x(u + \bar{u} + d + \bar{d})$$

Ratio:

$$\frac{F_2^N}{F_2^{\nu N}} = \frac{1}{2}(e_u^2 + e_d^2) = \frac{5}{18} \simeq 0.28$$

Mean Square Charge of Interacting Constituents (S=0)

Deep-Inelastic Scattering - Momentum Conservation

Neutral-current (photon) DIS:

$$F_2^N = x \frac{e_u^2 + e_d^2}{2} (u + \bar{u} + d + \bar{d})$$

Charged-current DIS:

$$F_2^{\nu N} = x(u + \bar{u} + d + \bar{d})$$

Momentum fraction:

$$\int_0^1 F_2^N dx = \frac{e_u^2 + e_d^2}{2} \int_0^1 x(u + \bar{u} + d + \bar{d})$$

Gargamelle: 0.49 +/- 0.07

SLAC:

0.14 + / - 0.05

Quarks carry half of the nucleon momentum!

3-jet events at PETRA

Recall the intro on colour:

Observation of its higher order process,

marks the discovery of the gluon.

Mom. Conservation: Gluons carry the other half of the nucleon momentum.

Nucleon Structure

Three quarks with 1/3 of total proton momentum each.

Three quarks with some momentum smearing.

The three quarks radiate gluons to lower momentum fractions x.

HERA - Early Measurements

HERA - Early Measurements

QCD Radiation

DGLAP equations are easy to "understand" intuitively, in terms of four "splitting functions",

P_{ab}(z): the probability that parton a will radiate a parton b with the fraction z of the original momentum carried by a.

QCD Radiation

Schematically, DGLAP equations:

$$\frac{dq_f(x,Q^2)}{d \ln Q^2} = \alpha_s \left[q_f \otimes P_{qq} + g \otimes P_{gq} \right]$$
strong coupling constant

That is, the change of quark distribution q with Q^2 is given by the probability that q and g radiate q.

Similarly, for gluons:

$$\frac{dg(x,Q^2)}{d \ln Q^2} = a_s \left[\sum q_f \otimes P_{qg} + g \otimes P_{gg} \right]$$

Bjorken scaling and QCD Radiation

Modern understanding of nucleon composition

Brief Summary:

DIS

DIS probe nucleon or nuclear structure, described in terms of quarks and gluons,

Feynman's parton model - point like partons, which

behave *incoherently* - combined with QCD radiation are remarkably successful in describing DIS cross sections.

QCD evolution allows one to relate quantitatively processes at different scales Q^2 ,

Parton distributions f(x) are intrinsic properties of the nucleon and (thus) process independent.

This is great for RHIC, LHC, and many other areas.

Gluons are a very significant part of the nucleon

Structure Functions at High *x*

Valence Quark Distributions

Why Are PDFs at High x Important?

- Valence quark dominance: simpler picture
 - -- direct comparison with nucleon structure models SU(6) symmetry, broken SU(6), diquark
- x → 1 region amenable to pQCD analysis
 - -- hadron helicity conservation?
- Clean connection with QCD, via lattice moments
- Input for search for physics beyond the Standard Model at high energy collider
 - -- evolution: high x at low $Q^2 \rightarrow low x$ at high Q^2
 - -- small uncertainties amplified
 - -- example: HERA 'anomaly' (1998)
- Input to nuclear, high energy and astrophysics calculations

Predictions for High x

Proton Wavefunction (Spin and Flavor Symmetric)

$$\left| \begin{array}{c} p \uparrow \rangle = \overline{\frac{1}{\sqrt{2}}} \left| u \uparrow (ud)_{S=0} \right\rangle + \overline{\frac{1}{\sqrt{18}}} \left| u \uparrow (ud)_{S=1} \right\rangle - \overline{\frac{1}{3}} \left| u \downarrow (ud)_{S=1} \right\rangle \\ - \overline{\frac{1}{3}} \left| d \uparrow (uu)_{S=1} \right\rangle - \overline{\frac{\sqrt{2}}{3}} \left| d \downarrow (uu)_{S=1} \right\rangle \end{array}$$

Nucleon Model	F ₂ n/F ₂ p	d/u	∆u/u	∆d/d	A ₁ ⁿ	A ₁ ^p
SU(6)	2/3	1/2	2/3	-1/3	0	5/9
Scalar diquark	1/4	0	1	-1/3	1	1
pQCD	3/7	1/5	1	1	1	1

$F_2^n/F_2^p \rightarrow d/u$ ratio at high-x

Hadronic physics output 1: d/u ratio

d/u ratio at high x
 of interest for
 nonperturbative
 models of nucleon

→ CJ15:

more flexible parametrization

$$d \rightarrow d + b x^{c} u$$

allows finite, nonzero x = 1 limit

(standard PDF form gives 0 or ∞ unless $a_2^d = a_2^u$)

MMHT14: fitted deuteron corrections standard d parametrization
→ "UNDERCONSTRAINED"

JR14 (and ABM12):

Similar deuteron corrections standard *d*; no lepton/W asym. → "OVERCONSTRAINED"

CT14:
$$\beta_u = \beta_d \implies d/u$$
 finite No nuclear corrections

$F_2^n/F_2^p \rightarrow d/u$ ratio at high-x

BONUS at Hall B 11 GeV with CLAS12

0.8 SU(6) d/u = 1/2-0.7-0.6 -0.5 0.4 Helicity conservation 0.3 d/u = 1/5• $Q^2 = 4-9 \text{ GeV}^2$ -0.2 Scalar diquark • $Q^2 = 9-15 \text{ GeV}^2$ -0.1dominance d/u = 00.2 0.4 0.8 0.6

X

Hall A 11 GeV with HRS

Longstanding issue in proton structure

Proton PVDIS: d/u at high x

$$A_{PV} = \frac{G_F Q^2}{\sqrt{2}\pi\alpha} [a(x) + f(y)b(x)]$$

SU(6): $d/u\sim1/2$ Broken SU(6): $d/u\sim0$

Perturbative QCD: d/u~1/5

$$a^{P}(x) \approx \frac{u(x) + 0.91d(x)}{u(x) + 0.25d(x)}$$

Projected 12 GeV d/u extractions

- <u>3 JLab 12 GeV experiments</u>:
- CLAS12 BoNuS spectator tagging
- BigBite DIS ³H/³He ratio
- SoLID PVDIS ep
- The SoLID extraction of d/u is directly from ep DIS:
 - No nuclear corrections
 - No assumption of charge symmetry

Sea Quark Distributions

Sea Asymmetry (d_bar/u_bar)
Strange Sea

Flavor structure of the proton sea

☐ The proton sea is not SU(3) symmetric!

Violation of Gottfried sum rule

$$S_G = \int_0^1 [(F_2^p(x) - F_2^n(x))/x] dx$$

= $\frac{1}{3} + \frac{2}{3} \int_0^1 (\overline{u}_p(x) - \overline{d}_p(x)) dx$

Confirmed by Drell-Yan exp't

Why $\bar{d}(x) \neq \bar{u}(x)$?

Why does $ar{d}(x) - ar{u}(x)$ change sign?

$$=\frac{1}{3}$$
 (if $\overline{u}_p = \overline{d}_p$) NMC: $S_G = 0.235 \pm 0.026$

Challenges for $\overline{d}(x) - \overline{u}(x)$

☐ All known models predict no sign change!

Chiral-quark soliton model

Statistic model

☐ Future experiments – E906, ...

31

Semi-Inclusive DIS

$$Q(x) \equiv u(x) + \overline{u}(x) + d(x) + \overline{d}(x)$$

$$S(x) \equiv s(x) + \overline{s}(x)$$

$$K = K^{+} + K^{-}$$

Parton

= Multiplicities

First Hermes extraction: Phys.Lett. B666, 446 (2008)

Updated and final data now!

- Q^2 Negative squared 4-momentum transfer to the target
- X Parton fractional momentum
- Z Fractional energy transfer to the produced hadron

 $P_{h\perp}$ Hadron transverse momentum with respect to the virtual photon direction

New multiplicities

- New 3-dimensional (x-z-P_{h⊥}) unfolding to correct for acceptance, radiative effects, smearing, decay in flight and secondary strong interactions
- \odot Final 3-dimensional results corrected to 4π Born

kaon multiplicities, plb66 vs 2012

Old versus new S(x)

Kaon multiplicity ratio

• π case, there is a good agreement between COMPASS and HERMES for the π^+/π^- multiplicity ratio

Despite the difference in the shape of π multiplicity sum

- K case: clear discrepancy between COMPASS and HERMES even for the K ⁺/K⁻ multiplicity ratio
- DSS next fit of Kaon FF

Summary

- Electron Scattering to study Nucleon Structure
- Elastic: Form Factors

charge/current distributions

transverse density

 G_{E}^{p} @ large Q^{2} surprise \rightarrow shape of proton, 2- γ effects proton radius puzzle

Deep-Inelastic Scattering

Unpolarized Structure functions → Parton Distributions

High-x, valance quark distributions, d/u

Sea distributions: d_bar/u-bar asymmetry

poor knowledge on strange sea